The Best Brain, Inflammation, Pain, Energy, and Detox Diet Ever

Your source for quality supplements

Shop Now

Paleo diet in a Lyme disease treatment image from Marty Ross MD

The Best Brain, Inflammation, Pain, Energy, and Detox Diet Ever.

Try this diet. I think it is the best option for someone with chronic Lyme disease. It is designed to:

  • improve brain function and grow nerve connections,
  • prevent Alzheimer’s disease and Parkinson’s disease which Lyme can trigger,
  • decrease inflammation and inflammation cytokines from infection,
  • prevent and treats yeast overgrowth in the intestines that could cause more inflammation,
  • provide key vitamins, antioxidants, and dietary fiber for detoxification,
  • and repair and grow cell energy factories called mitochondria found in every cell.

The diet is named the Mito Food Plan. It was developed by physicians and nutritionist from The Institute for Functional Medicine and is based on the latest science. This article includes numerous papers and articles that are printed here for you to download with permission of the authors.

Marty Ross MD Discusses Healthy Food in Lyme Disease

This video was recorded in Feburary 2016 while Dr. Ross practiced in Seattle Washington.

 
 
 
Video Thumbnail
 
 
 
 
 
 
 
 
 
 
 
 

The Mito Food Plan

  • provides 60% of calories from healthy fats, 20% from protein, and 20% from complex carbohydrate sugars.
  • is similar to a Paleo diet as it avoids grains, but compared to the Paleo diet it relies more heavily on healthy fats and anti-inflammatory therapeutic foods,
  • is a gluten-free diet,
  • requires a rainbow of vegetable colors in a day to provide key vitamins and antioxidants,
  • includes three different periodic fasting options to increase the production of Brain Derived Neurotrophic Factor (BDNF) that promotes nerve growth and connections to improve brain function.

How To Use This Article

This article has a number of resources attached to it and steps to take. I am breaking it down in to a number of steps to make it easier to understand.

Step One

Calculate a target for your daily calorie intake.

  • Print or view the Target Calorie Recommendations page which I use in the video below.
  • Watch the video where I show you how to calculate your target calorie intake.

(Note: In the calculation 1 KG = 2.2 pounds. If a person weighs 150 pounds then they weigh 68.1 KG (150/2.2). Also 1 inch equals 2.54 cm. So a 5 ft 6 inch tall person is 66 inches tall. This person is 167.64 cm tall ( 66 X 2.54).)


Marty Ross MD Explains How To Calculate Your Recommended Calories

 
 
 
Video Thumbnail
 
 
 
 
 
 
 
 
 
 
 
 

Step Two

Create your food plan which provides a goal for the servings you should eat each day of protein, nuts and seeds, fruit, vegetables, legumes, and healthy fats.

  • Determine the different amount of servings for each food categories using the Options for Therapeutic Macronutrients Distributions table (print or view) and your target daily calories you determined in Step One.
  • Write the servings on the your Mito Food Plan (print or view).
  • Watch the video to see how I developed my own food plan.

Marty Ross MD Explains How to Create Your Mito Food Plan

 
 
 
Video Thumbnail
 
 
 
 
 
 
 
 
 
 
 
 

Step Three

Make sure you get enough essential vitamins and micronutrients in a day by having a rainbow of color each day from your vegetables and limited fruit intake. Make sure you try to eat foods of at least one of these colors identified in the Phytonutrients Spectrum Foods document (print or view).

Step Four

Develop your first menu and go shopping (or have someone help you do this). Sometimes figuring out how to get started is the hardest part. Try the Mito Food Plan Weekly Planner and Recipes (print).

Step Five

Knowledge is power. Understand why it is good eat this way. Read Mito Food Plan Comprehensive Guide (print). This document explains the food plan in some detail. It provides a good explanation of why you should have so many health fats in a day and why some recommendations are called therapeutic foods.

Step Six

Adjust.

As I have worked with this food plan for my own diet I have had to adjust. The initial calorie target that I calculated was too much, and I was gaining weight. So I had to cut back on all of the food categories equally.

I tried to eat “the best’ protein choices like grass feed bison, beef, and wild salmon. But this is very expensive. So you may need to emphasize the other protein choices.


My Favorite Food

By far my favorite therapeutic food is coconut oil. I now start out each day by putting 1 tablespoon in my morning coffee or tea. Coconut oil is direct brain fuel. It is rich in medium chain triglycerides and the brain superfuel known as beta-hydroxybutyrate. It is shown to improve brain function and improve mitochondrial energy function too.

A Note on Fasting

Periodic fasting is shown to improve brain function, decrease inflammation and improve the function of the mitochondria energy factories. It can help prevent Alzheimer’s and Parkinson’s disease. There are three types of fasting you can try. These options are outlined in the Mito Food Plan Comprehensive Guide on pages 7, and 29-30. Consider discussing fasting with your physician before trying the 24 hour option.

The options include

  • 24 hour water only fast 1-2 times a month
  • 600 calorie daily fast 1 time a week, or
  • 12 hour fast 4 times a week with no food from dinner until breakfast.

A Detox Diet

The Mito Food Plan is a detox diet. It is full of antioxidants that work to increase the master detox chemical used by the liver called glutathione. For more information about this key chemical read Glutathione: The Great Fixer. In addition to the food choices outlined in the diet be sure to drink 1/2 of your body weight (in pounds) as ounces of water a day. For example a 150 pound person should drink 75 ounces of water a day. Read more about detoxification in Lyme Detoxification 101: The Basics.

An Anti-Yeast Diet

The Mito Food Plan is great for treating and preventing yeast overgrowth in the intestines. It is a low carbohydrate (sugar) diet. In this way it starves yeast of its food source sugar. Read more about preventing and treating yeast in the Yeast Chapter.

Go Organic

As much as possible buy organic foods. Do not add more poisons and toxins to your body. In Lyme disease, the various germs release toxins. In addition some of the medications are toxins too. So limit your exposure to other toxins when you eat organic foods.

Does The Food Plan Work?

Yes, but it but in most cases it takes time.

In my own case though I saw some dramatic improvements after working with this diet for 1.5 months. I was having daily severe headaches, very low energy, and poor sleep over a course of 3 months. I tried various approaches, but only after using this diet plan did I really turn the corner. Now I am back functioning fully.

Disclaimer

The ideas and recommendations on this website and in this article are for informational purposes only. For more information about this, see the sitewide Terms & Conditions.

References

View Citations

This reference list for the Mito Food Plan is reprinted with permission from the Institute for Functional Medicine

Therapeutic Foods for Energy

  1. Admassu H, Gasmalla MAA, Yang R, Zhao W. Bioactive peptides derived from seaweed protein and their health benefits: antihypertensive, antioxidant, and antidiabetic properties. J Food Sci. 2018 Jan;83(1):6-16. doi: 10.1111/1750- 3841.14011.
  2. Alonso-Alonso M. Cocoa flavanols and cognition: regaining chocolate in old age? Am J Clin Nutr. 2015 Mar;101(3):423-4. doi: 10.3945/ajcn.114.106146.
  3. Andrade JP, Assunção M. Protective effects of chronic green tea consumption on age-related neurodegeneration. Curr Pharm Des. 2012;18(1):4-14.
  4. Angeloni C, Malaguti M, Rizzo B, Barbalace MC, et al. Neuroprotective effect of sulforaphane against methylglyoxal cytotoxicity. Chem Res Toxicol. 2015 Jun 15;28(6):1234-45. doi: 10.1021/acs.chemrestox.5b00067.
  5. Ashworth A, Mitchell K, Blackwell JR, Vanhatalo A, Jones AM. High-nitrate vegetable diet increases plasma nitrate and nitrite concentrations and reduces blood pressure in healthy women. Public Health Nutr. 2015 Oct;18(14):2669-78. doi: 10.1017/S1368980015000038.
  6. Babu AS, Veluswamy SK, Arena R, Guazzi M, Lavie CJ. Virgin coconut oil and its potential cardioprotective effects. Postgrad Med. 2014 Nov;126(7):76-83. doi: 10.3810/pgm.2014.11.2835.
  7. Berryman CE, West SG, Fleming JA, Bordi PL, Kris-Etherton PM. Effects of daily almond consumption on cardiometabolic risk and abdominal adiposity in healthy adults with elevated LDL cholesterol: a randomized controlled trial. J Am Heart Assoc. 2015 Jan 5;4(1):e000993. doi: 10.1161/JAHA.114.000993.
  8. Bookheimer SY, Renner BA, Ekstrom A, Li Z, et al. Pomegranate juice augments memory and FMRI activity in middle-aged and older adults with mild memory complaints. Evid Based Complement Alternat Med. 2013;2013:946298. doi: 10.1155/2013/946298.
  9. Brown ES, Allsopp PJ, Magee PJ, Gill CI, et al. Seaweed and human health. Nutr Rev. 2014 Mar;72(3):205-16. n    Burton-Freeman BM, Sandhu AK, Edirisinghe I. Mangos and their bioactive components: adding variety to the fruit plate for health. Food Funct. 2017 Sep 20;8(9):3010-3032. doi: 10.1039/c7fo00190h.
  10. Burton-Freeman BM, Sandhu AK, Edirisinghe I. Red raspberries and their bioactive polyphenols: cardiometabolic and neuronal health links. Adv Nutr. 2016 Jan 15;7(1):44-65. doi: 10.3945/an.115.009639.
  11. Byelashov OA, Sinclair AJ, Kaur G. Dietary sources, current intakes, and nutritional role of omega-3 docosapentaenoic acid. Lipid Technol. 2015 Apr;27(4):79-82.
  12. Calder PC, Yaqoob P. Marine omega-3 fatty acids and coronary heart disease. Curr Opin Cardiol. 2012 Jul;27(4):412-9.
  13. Casamenti F, Grossi C, Rigacci S, Pantano D, et al. Oleuropein aglycone: a possible drug against degenerative conditions. in vivo evidence of its effectiveness against Alzheimer’s disease. J Alzheimers Dis. 2015;45(3):679-88. doi: 10.3233/JAD142850.
  14. Cederholm T, Salem N Jr, Palmblad J. ω-3 fatty acids in the prevention of cognitive decline in humans. Adv Nutr. 2013 Nov 6;4(6):672-6. doi: 10.3945/an.113.004556.
  15. Chakraborty K, Joseph D, Praveen NK. Antioxidant activities and phenolic contents of three red seaweeds (division: Rhodophyta) harvested from the gulf of mannar of peninsular india. J Food Sci Technol. 2015 Apr;52(4):1924-35. doi: 10.1007/s13197-013-1189-2.
  16. Chintapenta M, Spence J, Kwon HI, Blaszczyk AT. A brief review of caprylidene (axona) and coconut oil as alternative fuels in the fight against alzheimer’s disease. Consult Pharm. 2017 Dec 1;32(12):748-751. doi: 10.4140/TCP.n.2017.748.
  17. Conzatti A, Fróes FC, Schweigert Perry ID, Souza CG. Clinical and molecular evidence of the consumption of broccoli, glucoraphanin and sulforaphane in humans. Nutr Hosp. 2014 Nov 30;31(2):559-69. doi: 10.3305/nh.2015.31.2.7685.
  18. Crichton GE, Elias MF, Alkerwi A. Chocolate intake is associated with better cognitive function: The Maine-Syracuse Longitudinal Study. Appetite. 2016 May 1;100:126-32. doi: 10.1016/j.appet.2016.02.010.
  19. Dash PK, Zhao J, Orsi SA, Zhang M, Moore AN. Sulforaphane improves cognitive function administered following traumatic brain injury. Neurosci Lett. 2009 Aug 28;460(2):103-7. doi: 10.1016/j.neulet.2009.04.028.
  20. DebMandal M, Mandal S. Coconut (Cocos nucifera L.: Arecaceae): in health promotion and disease prevention. Asian Pac J Trop Med. 2011 Mar;4(3):241-7. doi: 10.1016/S1995-7645(11)60078-3.
  21. Del Bo’ C, Martini D, Porrini M, Klimis-Zacas D, Riso P. Berries and oxidative stress markers: an overview of human intervention studies. Food Funct. 2015 Sep;6(9):2890-917. doi: 10.1039/c5fo00657k.
  22. De la Rubia Ortí JE, Sánchez Álvarez C, Selvi Sabater P, Bueno Cayo AM, et al. How does coconut oil affect cognitive performance in alzheimer’s patients? Nutr Hosp. 2017 Mar 30;34(2):352-356. doi: 10.20960/nh.780.
  23. Devore EE, Kang JH, Breteler MM, Grodstein F. Dietary intakes of berries and flavonoids in relation to cognitive decline. Ann Neurol. 2012 Jul;72(1):135-43. doi: 10.1002/ana.23594.
  24. Díaz-Rubio ME, Pérez-Jiménez J, Martínez-Bartolomé MÁ, Álvarez I, Saura-Calixto F. Regular consumption of an antioxidant-rich juice improves oxidative status and causes metabolome changes in healthy adults. Plant Foods Hum Nutr. 2015 Mar;70(1):9-14. doi: 10.1007/s11130-014-0455-4.
  25. Dreher ML, Davenport AJ. Hass avocado composition and potential health effects. Crit Rev Food Sci Nutr. 2013;53(7):738-50. doi: 10.1080/10408398.2011.556759.
  26. Fernando WM, Martins IJ, Goozee KG, Brennan CS, et al. The role of dietary coconut for the prevention and treatment of alzheimer’s disease: potential mechanisms of action. Br J Nutr. 2015 Jul 14;114(1):1-14. doi: 10.1017/ S0007114515001452.
  27. Ferretti G, Bacchetti T, Belleggia A, Neri D. Cherry antioxidants: from farm to table. Molecules. 2010 Oct 12;15(10):6993-7005. doi: 10.3390/molecules15106993.
  28. Folkard DL, Marlow G, Mithen RF, Ferguson LR. Effect of sulforaphane on NOD2 via NF-κB: implications for crohn’s disease. J Inflamm (Lond). 2015 Jan 20;12:6. doi: 10.1186/s12950-015-0051-x.
  29. Freitas AK, Lobato JF, Cardoso LL, Tarouco JU, et al. Nutritional composition of the meat of hereford and braford steers finished on pastures or in a feedlot in southern brazil. Meat Sci. 2014 Jan;96(1):353-60. doi: 10.1016/j. Meatsci.2013.07.021.
  30. Garrido M, González-Gómez D, Lozano M, Barriga C, et al. A Jerte valley cherry product provides beneficial effects on sleep quality. Influence on aging. J Nutr Health Aging. 2013;17(6):553-60. doi: 10.1007/s12603-013-0029-4.
  31. Giacoppo S, Galuppo M, Montaut S, Iori R, et al. An overview on neuroprotective effects of isothiocyanates for the treatment of neurodegenerative diseases. Fitoterapia. 2015 Oct;106:12-21. doi: 10.1016/j.fitote.2015.08.001.
  32. Gil A, Gil F. Fish, a mediterranean source of n-3 PUFA: benefits do not justify limiting consumption. Br J Nutr. 2015 Apr;113(S2):S58-S67.
  33. Grassi D, Ferri C, Desideri G. Brain protection and cognitive function: cocoa flavonoids as nutraceuticals. Curr Pharm Des. 2016;22(2):145-51.
  34. Guerrero-Beltrán CE, Calderón-Oliver M, Pedraza-Chaverri J, Chirino YI. Protective effect of sulforaphane against oxidative stress: recent advances. Exp Toxicol Pathol. 2012 Jul;64(5):503-8. doi: 10.1016/j.etp.2010.11.005.
  35. Howatson G, Bell PG, Tallent J, Middleton B, et al. Effect of tart cherry juice (prunus cerasus) on melatonin levels and enhanced sleep quality. Eur J Nutr. 2012 Dec;51(8):909-16. doi: 10.1007/s00394-011-0263-7.
  36. Hu Yang I, De la Rubia Ortí JE, Selvi Sabater P, Sancho Castillo S, et al. Coconut oil: non-alternative drug treatment against alzheimer´s disease. Nutr Hosp. 2015 Dec 1;32(6):2822-7. doi: 10.3305/nh.2015.32.6.9707.
  37. Joseph JA, Shukitt-Hale B, Willis LM. Grape juice, berries, and walnuts affect brain aging and behavior. J Nutr. 2009 Sep;139(9):1813S-7S. doi: 10.3945/jn.109.108266.
  38. Jovanovski E, Bosco L, Khan K, Au-Yeung F, et al. Effect of spinach, a high dietary nitrate source, on arterial stiffness and related hemodynamic aeasures: a randomized, controlled trial in healthy adults. Clin Nutr Res. 2015 Jul;4(3):160-7. doi: 10.7762/cnr.2015.4.3.160.
  39. Kamil A, Chen CY. Health benefits of almonds beyond cholesterol reduction. J Agric Food Chem. 2012 Jul 11;60(27):6694-702. doi: 10.1021/jf2044795.
  40. Kidd PM. Alzheimer’s disease, amnestic mild cognitive impairment, and age-associated memory impairment: current understanding and progress toward integrative prevention. Altern Med Rev. 2008 Jun;13(2):85-115.
  41. Kim KA, Kim SM, Kang SW, Jeon SI, et al. Edible seaweed, Eisenia bicyclis, protects retinal ganglion cells death caused by oxidative stress. Mar Biotechnol (NY). 2012 Aug;14(4):383-95. doi: 10.1007/s10126-012-9459-y.
  42. Krikorian R, Boespflug EL, Fleck DE, Stein AL, et al. Concord grape juice supplementation and neurocognitive function in human aging. Agric Food Chem. 2012 Jun 13;60(23):5736-42. doi: 10.1021/jf300277g.
  43. Kuszewski JC, Wong RHX, Howe PRC. Can curcumin counteract cognitive decline? clinical trial evidence and rationale for combining ω-3 fatty acids with curcumin. Adv Nutr. 2018 Mar 1;9(2):105-113. doi: 10.1093/advances/ nmx013.
  44. Larsson SC. Coffee, tea, and cocoa and risk of stroke. Stroke. 2014 Jan;45(1):309-14. doi: 10.1161/ STROKEAHA.113.003131.
  45. Li Z, Wong A, Henning SM, Zhang Y, et al. Hass avocado modulates postprandial vascular reactivity and postprandial inflammatory responses to a hamburger meal in healthy volunteers. Food Funct. 2013 Feb 26;4(3):384-91. doi: 10.1039/ c2fo30226h.
  46. Liu AH, Bondonno CP, Croft KD, Puddey IB, et al. Effects of a nitrate-rich meal on arterial stiffness and blood pressure in healthy volunteers. Nitric Oxide. 2013 Nov 30;35:123-30. doi: 10.1016/j.niox.2013.10.001.
  47. Lockyer S, Corona G, Yaqoob P, Spencer JP, Rowland I. Secoiridoids delivered as olive leaf extract induce acute improvements in human vascular function and reduction of an inflammatory cytokine: a randomised, double-blind, placebo-controlled, cross-over trial. Br J Nutr. 2015 Jul 14;114(1):75-83. doi: 10.1017/S0007114515001269.
  48. Lucas EA, Li W, Peterson SK, Brown A, et al. Mango modulates body fat and plasma glucose and lipids in mice fed a high-fat diet. Br J Nutr. 2011; 106:1495–1505.
  49. Luna-Vázquez FJ, Ibarra-Alvarado C, Rojas-Molina A, Rojas-Molina JI, et al. Nutraceutical value of black cherry prunus serotina ehrh. fruits: antioxidant and antihypertensive properties. Molecules. 2013 Nov 25;18(12):14597-612. doi: 10.3390/molecules181214597.
  50. Mandel SA, Amit T, Weinreb O, Youdim MB. Understanding the broad-spectrum neuroprotective action profile of green tea polyphenols in aging and neurodegenerative diseases. J Alzheimers Dis. 2011;25(2):187-208. doi: 10.3233/JAD2011-101803.
  51. Mandel SA, Weinreb O, Amit T, Youdim MB. Molecular mechanisms of the neuroprotective/neurorescue action of multi-target green tea polyphenols. Front Biosci (Schol Ed). 2012 Jan 1;4:581-98.
  52. Mangialasche F, Xu W, Kivipelto M, Costanzi E, et al. Tocopherols and tocotrienols plasma levels are associated with cognitive impairment. Neurobiol Aging. 2012 Oct;33(10):2282-90. doi: 10.1016/j.neurobiolaging.2011.11.019
  53. Marina AM, Man YB, Nazimah SA, Amin I. Antioxidant capacity and phenolic acids of virgin coconut oil. Int J Food Sci Nutr. 2009;60 Suppl 2:114-23. doi: 10.1080/09637480802549127.
  54. Marsh CE, Carter HH, Guelfi KJ, Smith KJ, et al. Brachial and cerebrovascular functions are enhanced in postmenopausal women after ingestion of chocolate with a high concentration of cocoa. J Nutr. 2017 Sep;147(9):1686- 1692. doi: 10.3945/jn.117.250225.
  55. Martorell M, Forman K, Castro N, Capó X, et al. Potential therapeutic effects of oleuropein aglycone in alzheimer’s disease. Curr Pharm Biotechnol. 2016;17(11):994-1001.
  56. Masibo M, He Q. Major mango polyphenols ad their potential significance to human health. Compr Rev Food Sci. 2008; 7 (4):309-319. doi: 10.1111/j.1541-4337.2008.00047.x.
  57. Mastroiacovo D, Kwik-Uribe C, Grassi D, Necozione S, et al. Cocoa flavanol consumption improves cognitive function, blood pressure control, and metabolic profile in elderly subjects: the cocoa, cognition, and aging (CoCoA) study–a randomized controlled trial. Am J Clin Nutr. 2015 Mar;101(3):538-48. doi: 10.3945/ajcn.114.092189.
  58. McAfee AJ, McSorley EM, Cuskelly GJ, Fearon AM, et al. Red meat from animals offered a grass diet increases plasma and platelet n-3 PUFA in healthy consumers. Br J Nutr. 2011 Jan;105(1):80-9. doi: 10.1017/S0007114510003090.
  59. McCarty MF, DiNicolantonio JJ, O’Keefe JH. Ketosis may promote brain macroautophagy by activating sirt1 and hypoxia-inducible factor-1. Med Hypotheses. 2015 Aug 10. pii: S0306-9877(15)00306-0. doi: 10.1016/j. Mehy.2015.08.002.
  60. Miller MG, Shukitt-Hale B. Berry fruit enhances beneficial signaling in the brain. J Agric Food Chem. 2012 Jun 13;60(23):5709-15. doi: 10.1021/jf2036033.
  61. Morris MC. Nutrition and risk of dementia: overview and methodological issues. Ann N Y Acad Sci. 2016 Mar;1367(1):31-7. doi: 10.1111/nyas.13047.
  62. Morroni F, Sita G, Djemil A, D’Amico M, et al. Comparison of adaptive neuroprotective mechanisms of sulforaphane and its interconversion product erucin in in vitro and in vivo models of parkinson’s disease. J Agric Food Chem. 2018 Jan 31;66(4):856-865. doi: 10.1021/acs.jafc.7b04641.
  63. Müller H, Lindman AS, Blomfeldt A, Seljeflot I, Pedersen JI. A diet rich in coconut oil reduces diurnal postprandial variations in circulating tissue plasminogen activator antigen and fasting lipoprotein (a) compared with a diet rich in unsaturated fat in women. J Nutr. 2003 Nov;133(11):3422-7.
  64. Murugan AC, Karim MR, Yusoff MB, Tan SH, et al. New insights into seaweed polyphenols on glucose homeostasis. Pharm Biol. 2015 Aug;53(8):1087-97. doi: 10.3109/13880209.2014.959615.
  65. Nafar F, Mearow KM. Coconut oil attenuates the effects of amyloid-β on cortical neurons in vitro. J Alzheimers Dis. 2014;39(2):233-7. doi: 10.3233/JAD-131436. n      Nabavi SF, Braidy N, Gortzi O, Sobarzo-Sanchez E, et al. Luteolin as an anti-inflammatory and neuroprotective agent: a brief review. Brain Res Bull. 2015 Sep 8;119(Pt A):1-11. doi: 10.1016/j.brainresbull.2015.09.002.
  66. Okubo H, Miyake Y, Sasaki S, Murakami K, et al. Dietary patterns and risk of parkinson’s disease: a case-control study in japan. Eur J Neurol. 2012 May;19(5):681-8. doi: 10.1111/j.1468-1331.2011.03600.x. n            Oñatibia-Astibia A, Franco R, Martínez-Pinilla E. Health benefits of methylxanthines in neurodegenerative diseases. Mol Nutr Food Res. 2017 Jun;61(6). doi: 10.1002/mnfr.201600670.
  67. Ortiz-Avila O, Esquivel-Martínez M, Olmos-Orizaba BE, Saavedra-Molina A, et al. Avocado oil improves mitochondrial function and decreases oxidative stress in brain of diabetic rats. J Diabetes Res. 2015;2015:485759. doi: 10.1155/2015/485759.
  68. Pavan E, Duckett SK. Fatty acid composition and interrelationships among eight retail cuts of grass-feed beef. Meat Sci. 2013 Mar;93(3):371-7. doi: 10.1016/j.meatsci.2012.09.021.
  69. Poulose SM, Miller MG, Shukitt-Hale B. Role of walnuts in maintaining brain health with age. J Nutr. 2014 Apr;144(4 Suppl):561S-566S. doi: 10.3945/jn.113.184838.
  70. Raji CA, Erickson KI, Lopez OL, Kuller LH, et al. Regular fish consumption and age-related brain gray matter loss. Am J Prev Med. 2014 Oct;47(4):444-51. doi: 10.1016/j.amepre.2014.05.037.
  71. Rigacci S. Olive oil phenols as promising multi-targeting agents against alzheimer’s disease. Adv Exp Med Biol. 2015;863:1-20. doi: 10.1007/978-3-319-18365-7_1.
  72. Rodríguez-Morató J, Xicota L, Fitó M, Farré M, et al. Potential role of olive oil phenolic compounds in the prevention of neurodegenerative diseases. Molecules. 2015 Mar 13;20(3):4655-80. doi: 10.3390/molecules20034655.
  73. Rodriguez-Rodriguez R. Oleanolic acid and related triterpenoids from olives on vascular function: molecular mechanisms and therapeutic perspectives. Curr Med Chem. 2015;22(11):1414-25.
  74. Rondanelli M, Faliva MA, Peroni G, Moncaglieri F, et al. Focus on pivotal role of dietary intake (diet and supplement) and blood levels of tocopherols and tocotrienols in obtaining successful aging. Int J Mol Sci. 2015 Sep 25;16(10):23227- 49. doi: 10.3390/ijms161023227.
  75. Roohinejad S, Koubaa M, Barba FJ, Saljoughian S, et al. Application of seaweeds to develop new food products with enhanced shelf-life, quality and health-related beneficial properties. Food Res Int. 2017 Sep;99(Pt 3):1066-1083. doi: 10.1016/j.foodres.2016.08.016.
  76. Scoditti E, Capurso C, Capurso A, Massaro M. Vascular effects of the mediterranean diet-part II: role of omega-3 fatty acids and olive oil polyphenols. Vascul Pharmacol. 2014 Dec;63(3):127-34. doi: 10.1016/j.vph.2014.07.001.
  77. Scott TM, Rasmussen HM, Chen O, Johnson EJ. Avocado consumption increases macular pigment density in older adults: a randomized, controlled trial. Nutrients. 2017 Aug 23;9(9). doi: 10.3390/nu9090919.
  78. Serafini MM, Catanzaro M, Rosini M, Racchi M, Lanni C. Curcumin in alzheimer’s disease: can we think to new strategies and perspectives for this molecule? Pharmacol Res. 2017 Oct;124:146-155. doi: 10.1016/j.phrs.2017.08.004
  79. Shaygannia E, Bahmani M, Zamanzad B, Rafieian-Kopaei M. A review study on punica granatum L. J Evid Based Complementary Altern Med. 2015 Jul 30. pii: 2156587215598039. n           Shema-Didi L, Sela S, Ore L, Shapiro G, et al. One year of pomegranate juice intake decreases oxidative stress, inflammation, and incidence of infections in hemodialysis patients: a randomized placebo-controlled trial. Free Radic Biol Med. 2012 Jul 15;53(2):297-304. doi: 10.1016/j.freeradbiomed.2012.05.013.
  80. Shukitt-Hale B. Blueberries and neuronal aging. Gerontology. 2012;58(6):518-23. doi: 10.1159/000341101.
  81. Shukitt-Hale B, Bielinski DF, Lau FC, Willis LM, et al. The beneficial effects of berries on cognition, motor behaviour and neuronal function in ageing. Br J Nutr. 2015 Nov 28;114(10):1542-9. doi: 10.1017/S0007114515003451.
  82. Sita G, Hrelia P, Tarozzi A, Morroni F. Isothiocyanates are promising compounds against oxidative stress, neuroinflammation and cell death that may benefit neurodegeneration in parkinson’s disease. Int J Mol Sci. 2016 Sep 1;17(9). pii: E1454. doi: 10.3390/ijms17091454.
  83. Sohrab G, Angoorani P, Tohidi M, Tabibi H, et al. Pomegranate (Punicagranatum) juice decreases lipid peroxidation, but has no effect on plasma advanced glycated end-products in adults with type 2 diabetes: a randomized double-blind clinical trial. Food Nutr Res. 2015 Sep 8;59:28551. doi: 10.3402/fnr.v59.28551.
  84. Subash S, Essa MM, Al-Adawi S, Memon MA, et al. Neuroprotective effects of berry fruits on neurodegenerative diseases. Neural Regen Res. 2014 Aug 15; 9(16): 1557–1566. doi: 10.4103/1673-5374.139483.
  85. Suganthy N, Karutha Pandian S, Pandima Devi K. Neuroprotective effect of seaweeds inhabiting South Indian coastal area (Hare Island, Gulf of Mannar Marine Biosphere Reserve): cholinesterase inhibitory effect of hypnea valentiae and ulva reticulata. Neurosci Lett. 2010 Jan 14;468(3):216-9. doi: 10.1016/j.neulet.2009.11.001.
  86. Unlu NZ, Bohn T, Clinton SK, Schwartz SJ. Carotenoid absorption from salad and salsa by humans is enhanced by the addition of avocado or avocado oil. J Nutr. 2005 Mar;135(3):431-6.
  87. van Bussel BC, Henry RM, Ferreira I, van Greevenbroek MM, et al. A healthy diet is associated with less endothelial dysfunction and less low-grade inflammation over a 7-year period in adults at risk of cardiovascular disease. J Nutr. 2015 Mar;145(3):532-40. doi: 10.3945/jn.114.201236.
  88. Willis LM, Shukitt-Hale B, Joseph JA. Recent advances in berry supplementation and age-related cognitive decline. Curr Opin Clin Nutr Metab Care. 2009 Jan;12(1):91-4. doi: 10.1097/MCO.0b013e32831b9c6e.
  89. Yeap SK, Beh BK, Ali NM, Yusof HM, et al. Antistress and antioxidant effects of virgin coconut oil in vivo. Exp Ther Med. 2015 Jan;9(1):39-42.
  90. Yende SR, Harle UN, Chaugule BB. Therapeutic potential and health benefits of sargassum species. Pharmacogn Rev. 2014 Jan;8(15):1-7. doi: 10.4103/0973-7847.125514
  91. Zarfeshany A, Asgary S, Javanmard SH. Potent health effects of pomegranate. Adv Biomed Res. 2014 Mar 25;3:100. doi: 10.4103/2277-9175.129371.
  92. Zhang Y, Chen J, Qiu J, Li Y, et al. Intakes of fish and polyunsaturated fatty acids and mild-to-severe cognitive impairment risks: a dose-response meta-analysis of 21 cohort studies. Am J Clin Nutr. 2016 Feb;103(2):330-40. doi: 10.3945/ajcn.115.124081.
  93. Zhao CN, Meng X, Li Y, Li S, et al. Fruits for prevention and treatment of cardiovascular diseases. Nutrients. 2017 Jun 13;9(6). pii: E598. doi: 10.3390/nu9060598.

Protective Antioxidants

  1. Afzal M, Safer AM, Menon M. Green tea polyphenols and their potential role in health and disease. Inflammopharmacology. 2015 Aug;23(4):151-61. doi: 10.1007/s10787-015-0236-1.
  2. Albarracin SL, Stab B, Casas Z, Sutachan JJ, et al. Effects of natural antioxidants in neurodegenerative disease. Nutr Neurosci. 2012 Jan;15(1):1-9. doi: 10.1179/1476830511Y.0000000028.
  3. Bara´nski M, Srednicka-Tober D, Volakakis N, Seal C, et al. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: a systematic literature review and meta-analyses. Br J Nutr. 2014 Sep 14;112(5):794-811. doi: 10.1017/S0007114514001366
  4. Calabrese V, Cornelius C, Trovato A, Cavallaro M, et al. The hormetic role of dietary antioxidants in free radical-related diseases. Curr Pharm Des. 2010;16(7):877-83
  5. Chen T, He J, Zhang J, Li X, et al. The isolation and identification of two compounds with predominant radical scavenging activity in hempseed (seed of Cannabis sativa L.). Food Chem. 2012 Sep 15;134(2):1030-7. doi: 10.1016/j. Foodchem.2012.03.009.
  6. Daglia M, Di Lorenzo A, Nabavi SF, Talas ZS, Nabavi SM. Polyphenols: well beyond the antioxidant capacity: gallic acid and related compounds as neuroprotective agents: you are what you eat. Curr Pharm Biotechnol. 2014;15(4):362- 72.
  7. Djuric Z, Powell LC. Antioxidant capacity of lycopene-containing foods. Int J Food Sci Nutr. 2001 Mar;52(2):143-9.
  8. Fernandes VC, Domingues VF, de Freitas V, Delerue-Matos C, Mateus N. Strawberries from integrated pest management and organic farming: phenolic composition and antioxidant properties. Food Chem. 2012 Oct 15;134(4):1926-31. doi: 10.1016/j.foodchem.2012.03.130.
  9. Halvorsen BL, Carlsen MH, Phillips KM, Bøhn SK, et al. Content of redox-active compounds (ie, antioxidants) in foods consumed in the united states. Am J Clin Nutr. 2006 Jul;84(1):95-135.
  10. Lynn A, Mathew S, Moore CT, Russell J, et al. Effect of a tart cherry juice supplement on arterial stiffness and inflammation in healthy adults: a randomised controlled trial. Plant Foods Hum Nutr. 2014 Jun;69(2):122-7. doi: 10.1007/s11130-014-0409-x.
  11. Ou B, Bosak KN, Brickner PR, Iezzoni DG, Seymour EM. Processed tart cherry products–comparative phytochemical content, in vitro antioxidant capacity and in vitro anti-inflammatory activity. J Food Sci. 2012 May;77(5):H105-12. doi: 10.1111/j.1750-3841.2012.02681.x.
  12. Overall J, Bonney SA, Wilson M, Beermann A, et al. Metabolic effects of berries with structurally diverse anthocyanins. Int J Mol Sci. 2017 Feb 15;18(2). doi: 10.3390/ijms18020422.
  13. Pall ML, Levine S. Nrf2, a master regulator of detoxification and also antioxidant, anti-inflammatory and other cytoprotective mechanisms, is raised by health promoting factors. Sheng Li Xue Bao. 2015 Feb 25;67(1):1-18
  14. Patel S, Rauf A. Edible seeds from Cucurbitaceae family as potential functional foods: immense promises, few concerns. Biomed Pharmacother. 2017 Jul;91:330-337. doi: 10.1016/j.biopha.2017.04.090.
  15. Pellegrini N, Serafini M, Colombi B, Del Rio D, et al. Total antioxidant capacity of plant foods, beverages and oils consumed in italy assessed by three different in vitro assays. J Nutr. 2003 Sep;133(9):2812-9. n            Sanz-Pintos N, Pérez-Jiménez J, Buschmann AH, Vergara-Salinas JR, et al. Macromolecular antioxidants and dietary fiber in edible seaweeds. J Food Sci. 2017 Feb;82(2):289-295. doi: 10.1111/1750-3841.13592
  16. Srinivasan K. Antioxidant potential of spices and their active constituents. Crit Rev Food Sci Nutr. 2014;54(3):352-72. doi: 10.1080/10408398.2011.585525.
  17. Suman S, Shukla Y. Diallyl sulfide and its role in chronic diseases prevention. Adv Exp Med Biol. 2016;929:127-144. n  Traustadóttir T, Davies SS, Stock AA, Su Y, et al. Tart cherry juice decreases oxidative stress in healthy older men and women. J Nutr. 2009 Oct;139(10):1896-900. doi: 10.3945/jn.109.111716.

Anti-Inflammatory Nutrients

  1. Aggarwal BB, Van Kuiken ME, Lyer LH, Harikumar KB, Sung B. Molecular targets of nutraceuticals derived from dietary spices: potential role in suppression of inflammation and tumorigenesis. Exp Biol Med (Maywood). 2009 Aug;234(8):825-49. doi: 10.3181/0902-MR-78.
  2. Chen G, Smith JS. Determination of advanced glycation endproducts in cooked meat products. Food Chem. 2015 Feb 1;168:190-5. doi: 10.1016/j.foodchem.2014.06.081.
  3. Clifford T, Howatson G, West DJ, Stevenson EJ. The potential benefits of red beetroot supplementation in health and disease. Nutrients. 2015 Apr 14;7(4):2801-22. doi: 10.3390/nu7042801.
  4. Daulatzai MA. Chronic functional bowel syndrome enhances gut-brain axis dysfunction, neuroinflammation, cognitive impairment, and vulnerability to dementia. Neurochem Res. 2014 Apr;39(4):624-44. doi: 10.1007/s11064-014-1266-6.
  5. Kesse-Guyot E, Assmann KE, Andreeva VA, Touvier M, et al. Long-term association between the dietary inflammatory index and cognitive functioning: findings from the SU.VI.MAX study. Eur J Nutr. 2017 Jun;56(4):1647-1655. doi: 10.1007/s00394-016-1211-3. © 2018 The Institute for Functional Medicine Scientific/Medical Publications Anti-Inflammatory Nutrients (cont.)
  6. Lau FC, Shukitt-Hale B, Joseph JA. Nutritional intervention in brain aging: reducing the effects of inflammation and oxidative stress. Subcell Biochem. 2007;42:299-318.
  7. Macías-Cervantes MH, Rodríguez-Soto JM, Uribarri J, Díaz-Cisneros FJ, et al. Effect of an advanced glycation end product-restricted diet and exercise on metabolic parameters in adult overweight men. Nutrition. 2015 Mar;31(3): 446-51. doi: 10.1016/j.nut.2014.10.004.
  8. Mark AB, Poulsen MW, Andersen S, Andersen JM, et al. Consumption of a diet low in advanced glycation end products for 4 weeks improves insulin sensitivity in overweight women. Diabetes Care. 2014 Jan;37(1):88-95. doi: 10.2337/dc13- 0842.
  9. Kellow NJ, Savige GS. Dietary advanced glycation end-product restriction for the attenuation of insulin resistance, oxidative stress and endothelial dysfunction: a systematic review. Eur J Clin Nutr. 2013; 67:239–248. n  Perlmutter D. Combating inflammation in the brain–what is good for the body is good for the brain. Adv Mind Body Med. 2013 Winter;27(1):24-30.
  10. Sita G, Hrelia P, Tarozzi A, Morroni F. Isothiocyanates are promising compounds against oxidative stress, neuroinflammation and cell death that may benefit neurodegeneration in parkinson’s disease. Int J Mol Sci. 2016 Sep 1;17(9). doi: 10.3390/ijms17091454.
  11. Solas M, Milagro FI, Ramírez MJ, Martínez JA. Inflammation and gut-brain axis link obesity to cognitive dysfunction: plausible pharmacological interventions. Curr Opin Pharmacol. 2017 Dec;37:87-92. doi: 10.1016/j.coph.2017.10.005
  12. Uysal U, Seremet S, Lamping JW, Adams JM, et al. Consumption of polyphenol plants may slow aging and associated diseases. Curr Pharm Des. 2013;19(34):6094-111.

High-Quality Dietary Fats

  1. Agnoli C, Baroni L, Bertini I, Ciappellano S, et al. Position paper on vegetarian diets from the working group of the italian society of human nutrition. Nutr Metab Cardiovasc Dis. 2017 Dec;27(12):1037-1052. doi: 10.1016/j. Numecd.2017.10.020.
  2. Babu AS, Veluswamy SK, Arena R, Guazzi M, Lavie CJ. Virgin coconut oil and its potential cardioprotective effects. Postgrad Med. 2014 Nov;126(7):76-83. doi: 10.3810/pgm.2014.11.2835.
  3. Balfegó M, Canivell S, Hanzu FA, Sala-Vila A, et al. Effects of sardine-enriched diet on metabolic control, inflammation and gut microbiota in drug-naïve patients with type 2 diabetes: a pilot randomized trial. Lipids Health Dis. 2016 Apr 18;15:78. doi: 10.1186/s12944-016-0245-0.
  4. Butler LJ, Janulewicz PA, Carwile JL, White RF, et al. Childhood and adolescent fish consumption and adult neuropsychological performance: An analysis from the cape cod health study. Neurotoxicol Teratol. 2017 May;61:47-57. doi: 10.1016/j.ntt.2017.03.001. n       Cole GM, Ma QL, Frautschy SA. Dietary fatty acids and the aging brain. Nutr Rev. 2010 Dec;68 Suppl 2:S102-11. doi: 10.1111/j.1753-4887.2010.00345.x.
  5. Daley CA, Abbott A, Doyle PS, Nader GA, Larson S. A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef. Nutr J. 2010 Mar 10;9:10.
  6. Debbabi M, Zarrouk A, Bezine M, Meddeb W, et al. Comparison of the effects of major fatty acids present in the Mediterranean diet (oleic acid, docosahexaenoic acid) and in hydrogenated oils (elaidic acid) on 7-ketocholesterolinduced oxiapoptophagy in microglial BV-2 cells. Chem Phys Lipids. 2017 Oct;207(Pt B):151-170. doi: 10.1016/j. chemphyslip.2017.04.002.
  7. DebMandal M, Mandal S. Coconut (Cocos nucifera L.: Arecaceae): in health promotion and disease prevention. Asian Pac J Trop Med. 2011 Mar;4(3):241-7. doi: 10.1016/S1995-7645(11)60078-3.
  8. Denis I, Potier B, Vancassel S, Heberden C, Lavialle M. Omega-3 fatty acids and brain resistance to ageing and stress: body of evidence and possible mechanisms. Ageing Res Rev. 2013 Mar;12(2):579-94. doi: 10.1016/j.arr.2013.01.007.
  9. Eckert GP, Lipka U, Muller WE. Omega-3 fatty acids in neurodegenerative diseases: focus on mitochondria. Prostaglandins Leukot Essent Fatty Acids. 2013 Jan;88(1):105-14. doi: 10.1016/j.plefa.2012.05.006.
  10. Lawrence GD. Dietary fats and health: dietary recommendations in the context of scientific evidence. Adv Nutr. 2013 May 1;4(3):294-302. doi: 10.3945/an.113.003657.
  11. Lei E, Vacy K, Boon WC. Fatty acids and their therapeutic potential in neurological disorders. Neurochem Int. 2016 May;95:75-84. doi: 10.1016/j.neuint.2016.02.014.
  12. McAfee AJ, McSorley EM, Cuskelly GJ, Fearon AM, et al. Red meat from animals offered a grass diet increases plasma and platelet n-3 PUFA in healthy consumers. Br J Nutr. 2011 Jan;105(1):80-9. doi: 10.1017/S0007114510003090.
  13. Nafar F, Mearow KM. Coconut oil attenuates the effects of amyloid-β on cortical neurons in vitro. J Alzheimers Dis. 2014;39(2):233-7. doi: 10.3233/JAD-131436
  14. Pavan E, Duckett SK. Fatty acid composition and interrelationships among eight retail cuts of grass-feed beef. Meat Sci. 2013 Mar;93(3):371-7. doi: 10.1016/j.meatsci.2012.09.021.
  15. Rezapour-Firouzi S, Arefhosseini SR, Ebrahimi-Mamaghani M, Baradaran B, et al. Activity of liver enzymes in multiple sclerosis patients with hot-nature diet and co-supplemented hemp seed, evening primrose oils intervention. Complement Ther Med. 2014 Dec;22(6):986-93. doi: 10.1016/j.ctim.2014.10.004.
  16. Wysocza´nski T, Sokoła-Wysocza´nska E, P¸ekala J, Lochy´nski S, et al. Omega-3 fatty acids and their role in central nervous system–a review. Curr Med Chem. 2016;23(8):816-31.

Low Glycemic Impact

  1. Bordier L, Doucet J, Boudet J, Bauduceau B. Update on cognitive decline and dementia in elderly patients with diabetes. Diabetes Metab. 2014 Nov;40(5):331-7. doi: 10.1016/j.diabet.2014.02.002.
  2. De Felice FG, Lourenco MV. Brain metabolic stress and neuroinflammation at the basis of cognitiveimpairment in alzheimer’s disease. Front Aging Neurosci. 2015 May 19;7:94. doi: 10.3389/fnagi.2015.00094.
  3. Garber A, Csizmadi I, Friedenreich CM, Sajobi TT, et al. Association between glycemic load and cognitive function in community-dwelling older adults: results from the brain in motion study. Clin Nutr. 2017 Jul 17. pii: S0261- 5614(17)30250-9. doi: 10.1016/j.clnu.2017.07.011.
  4. Huang CC, Chung CM, Leu HB, Lin LY, et al. Diabetes mellitus and the risk of alzheimer’s disease: a nationwide population-based study. PLoS One. 2014 Jan 29;9(1):e87095. doi: 10.1371/journal.pone.0087095.
  5. Jovanovski E, Zurbau A, Vuksan V. Carbohydrates and endothelial function: is a low-carbohydrate diet or a low-glycemic index diet favourable for vascular health? Clin Nutr Res. 2015 Apr;4(2):69-75. doi: 10.7762/cnr.2015.4.2.69.
  6. Mansur RB, Lee Y, Zhou AJ, Carmona NE, et al. Determinants of cognitive function in individuals with type 2 diabetes mellitus: A meta-analysis. Ann Clin Psychiatry. 2018 Feb;30(1):38-50.
  7. Ojo O, Brooke J. Evaluating the association between diabetes, cognitive decline and dementia. Int J Environ Res Public Health. 2015 Jul 17;12(7):8281-94. doi: 10.3390/ijerph120708281. n    Seetharaman S, Andel R, McEvoy C, Dahl Aslan AK, et al. Blood glucose, diet-based glycemic load and cognitive aging among dementia-free older adults. J Gerontol A Biol Sci Med Sci. 2014 Aug 22. pii: glu135.
  8. Sieri S, Brighenti F, Agnoli C, Grioni S, et al. Dietary glycemic load and glycemic index and risk of cerebrovascular disease in the EPICOR cohort. PLoS One. 2013 May 23;8(5):e62625. doi: 10.1371/journal.pone.0062625.
  9. Solfrizzi V, Frisardi V, Seripa D, Logroscino G, et al. Mediterranean diet in predementia and dementia syndromes. Curr Alzheimer Res. 2011 Aug;8(5):520-42.
  10. Sünram-Lea SI, Owen L. The impact of diet-based glycaemic response and glucose regulation on cognition: evidence across the lifespan. Proc Nutr Soc. 2017 Nov;76(4):466-477. doi: 10.1017/S0029665117000829.
  11. Tuligenga RH, Dugravot A, Tabák AG, Elbaz A, et al. Midlife type 2 diabetes and poor glycaemic control as risk factors for cognitive decline in early old age: a post-hoc analysis of the whitehall II cohort study. Lancet Diabetes Endocrinol. 2014 Mar;2(3):228-35. doi: 10.1016/S2213-8587(13)70192-X.
  12. Willette AA, Bendlin BB, Starks EJ, Birdsill AC, et al. Association of insulin resistance with cerebral glucose uptake in late middle-aged adults at risk for alzheimer disease. JAMA Neurol. 2015 Sep;72(9):1013-20. doi: 10.1001/ jamaneurol.2015.0613. Erratum in: JAMA Neurol. 2015 Dec;72(12):1537.

Reduced Carbohydrates with Ketogenic Option

  1. Akram M. A focused review of the role of ketone bodies in health and disease. J Med Food. 2013 Nov;16(11):965-7. doi: 10.1089/jmf.2012.2592.
  2. Cunnane SC, Courchesne-Loyer A, St-Pierre V, Vandenberghe C, et al. Can ketones compensate for deteriorating brain glucose uptake during aging? implications for the risk and treatment of alzheimer’s disease. Ann N Y Acad Sci. 2016 Mar;1367(1):12-20. doi: 10.1111/nyas.12999.
  3. Dahlgren K, Gibas KJ. Ketogenic diet, high intensity interval training (HIIT) and memory training in the treatment of mild cognitive impairment: a case study. Diabetes Metab Syndr. 2018 Apr 11. pii: S1871-4021(18)30116-4. doi: 10.1016/j. dsx.2018.04.031.
  4. Gano LB, Patel M, Rho JM. Ketogenic diets, mitochondria, and neurological diseases. J Lipid Res. 2014 Nov;55(11):2211- 28. doi: 10.1194/jlr.R048975.
  5. Gibas MK, Gibas KJ. Induced and controlled dietary ketosis as a regulator of obesity and metabolic syndrome pathologies. Diabetes Metab Syndr. 2017 Nov;11 Suppl 1:S385-S390. doi: 10.1016/j.dsx.2017.03.022. n Henderson ST. Ketone bodies as a therapeutic for alzheimer’s disease. Neurotherapeutics. 2008 Jul;5(3):470-80.
  6. Hussain TA, Mathew TC, Dashti AA, Asfar S, et al. Effect of low-calorie versus low-carbohydrate ketogenic diet in type 2 diabetes. Nutrition. 2012 Oct;28(10):1016-21. doi: 10.1016/j.nut.2012.01.016. n      Krikorian R, Shidler MD, Dangelo K, Couch SC, et al. Dietary ketosis enhances memory in mild cognitive impairment. Neurobiol Aging. 2012 Feb; 33(2): 425.e19-425.e27. doi: 10.1016/j.neurobiolaging.2010.10.006.
  7. Miller VJ, Villamena FA, Volek JS. nutritional ketosis and mitohormesis: potential implications for mitochondrial function and human health. J Nutr Metab. 2018 Feb 11;2018:5157645. doi: 10.1155/2018/5157645.
  8. Paoli A, Bianco A, Damiani E, Bosco G. Ketogenic diet in neuromuscular and neurodegenerative diseases. Biomed Res Int. 2014;2014:474296. doi: 10.1155/2014/474296. n  Roberts RO, Roberts LA, Geda YE, Cha RH, et al. Relative intake of macronutrients impacts risk of mild cognitive impairment or dementia. J Alzheimers Dis. 2012;32(2):329-39. doi: 10.3233/JAD-2012-120862.
  9. S, Wainwright G, Mascitelli L. Nutrition and alzheimer’s disease: the detrimental role of a high carbohydrate diet. Eur J Intern Med. 2011 Apr;22(2):134-40. doi: 10.1016/j.ejim.2010.12.017.
  10. Veech RL, Bradshaw PC, Clarke K, Curtis W, et al. Ketone bodies mimic the life span extending properties of caloric restriction. IUBMB Life. 2017 May;69(5):305-314. doi: 10.1002/iub.1627.
  11. Zhao Z, Lange DJ, Voustianiouk A, MacGrogan D, et al. A ketogenic diet as a potential novel therapeutic intervention in amyotrophic lateral sclerosis. BMC Neurosci. 2006 Apr 3;7:29.

Intermittent Fasting and Caloric Restriction

  1. Aksungar FB, Sarıkaya M, Coskun A, Serteser M, Unsal I. Comparison of intermittent fasting versus caloric restriction in obese subjects: a two year follow-up. J Nutr Health Aging. 2017;21(6):681-685. doi: 10.1007/s12603-016-0786-y.
  2. Anderson RM, Weindruch R. The caloric restriction paradigm: implications for healthy human aging. Am J Hum Biol. 2012 Mar-Apr;24(2):101-6. doi: 10.1002/ajhb.22243. n    Anton S, Leeuwenburgh C. Fasting or caloric restriction for healthy aging. Exp Gerontol. 2013 Oct;48(10):1003-5. doi: 10.1016/j.exger.2013.04.011.
  3. Arnason TG, Bowen MW, Mansell KD. Effects of intermittent fasting on health markers in those with type 2 diabetes: a pilot study. World J Diabetes. 2017 Apr 15;8(4):154-164. doi: 10.4239/wjd.v8.i4.154.
  4. Blagosklonny MV. Once again on rapamycin-induced insulin resistance and longevity: despite of or owing to. Aging (Albany NY). 2012 May;4(5):350-8.
  5. Calabrese V, Cornelius C, Cuzzocrea S, Iavicoli I, et al. Hormesis, cellular stress response and vitagenes as critical determinants in aging and longevity. Mol Aspects Med. 2011 Aug;32(4-6):279-304. doi: 10.1016/j.mam.2011.10.007.
  6. Chen D, Bruno J, Easlon E, Lin SJ, Cheng HL, et al. Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev. 2008 Jul 1;22(13):1753-7. doi: 10.1101/gad.1650608.
  7. Cherif A, Roelands B, Meeusen R, Chamari K. Effects of intermittent fasting, caloric restriction, and ramadan intermittent fasting on cognitive performance at rest and during exercise in adults. Sports Med. 2016 Jan;46(1):35-47. doi: 10.1007/s40279-015-0408-6.
  8. Gerhart-Hines Z, Rodgers JT, Bare O, Lerin C, et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J. 2007 Apr 4;26(7):1913-23.
  9. Horne BD, Muhlestein JB, Anderson JL. Health effects of intermittent fasting: hormesis or harm? a systematic review. Am J Clin Nutr. 2015 Jul 1. pii: ajcn109553.
  10. Kishi T, Hirooka Y, Nagayama T, Isegawa K, et al. Calorie restriction improves cognitive decline via up-regulation of brainderived neurotrophic factor. Int Heart J. 2015 Jan 21;56(1):110-5. doi: 10.1536/ihj.14-168. n          Longo VD, Mattson MP. Fasting: molecular mechanisms and clinical applications. Cell Metab. 2014 Feb 4;19(2):181-92. doi: 10.1016/j.cmet.2013.12.008.
  11. Maalouf MA, Rho JM, Mattson MP. The neuroprotective properties of calorie restriction, the ketogneic diet, and ketone bodies. Brain Res Rev. 2009 March; 59(2): 293–315.
  12. Martin SL, Hardy TM, Tollefsbol TO. Medicinal chemistry of the epigenetic diet and caloric restriction. Curr Med Chem. 2013;20(32):4050-9.
  13. Mattson MP. Energy intake and exercise as determinants of brain health and vulnerability to injury and disease. Cell Metab. 2012 Dec 5;16(6):706-22. n     Mattson MP. Lifelong brain health is a lifelong challenge: from evolutionary principles to empirical evidence. Ageing Res Rev. 2015 Mar;20:37-45. doi: 10.1016/j.arr.2014.12.011.
  14. Mattson MP, Longo VD, Harvie M. Impact of intermittent fasting on health and disease processes. Ageing Res Rev. 2017 Oct;39:46-58. doi: 10.1016/j.arr.2016.10.005.
  15. Mattson MP, Moehl K, Ghena N, Schmaedick M, Cheng A. Intermittent metabolic switching, neuroplasticity and brain health. Nat Rev Neurosci. 2018 Feb;19(2):63-80. doi: 10.1038/nrn.2017.156.
  16. Most J, Tosti V, Redman LM, Fontana L. Calorie restriction in humans: an update.Ageing Res Rev. 2017 Oct;39:36-45. doi: 10.1016/j.arr.2016.08.005.
  17. Pani G. Neuroprotective effects of dietary restriction: evidence and mechanisms. Semin Cell Dev Biol. 2015 Apr;40:106- 114. doi: 10.1016/j.semcdb.2015.03.004.
  18. Paoli A, Bianco A, Damiani E, Bosco G. Ketogenic diet in neuromuscular and neurodegenerative diseases. Biomed Res Int. 2014;2014:474296. doi: 10.1155/2014/474296.
  19. Santos J, Leitão-Correia F, Sousa MJ, Leão C. Dietary restriction and nutrient balance in aging. Oxid Med Cell Longev. 2016;2016:4010357. doi: 10.1155/2016/4010357.
  20. Testa G, Biasi F, Poli G, Chiarpotto E. Calorie restriction and dietary restriction mimetics: a strategy for improving healthy aging and longevity. Curr Pharm Des. 2014;20(18):2950-77. n  Trepanowski JF, Canale RE, Marshall KE, Kabir MM, Bloomer RJ. Impact of caloric and dietary restriction regimens on markers of health and longevity in humans and animals: a summary of available findings. Nutr J. 2011 Oct 7;10:107. doi: 10.1186/1475-2891-10-107.
  21. van Praag H, Fleshner M, Schwartz MW, Mattson MP. Exercise, energy intake, glucose homeostasis, and the brain. J Neurosci. 2014 Nov 12;34(46):15139-49. doi: 10.1523/JNEUROSCI.2814-14.2014.
  22. VanItallie TB. Biomarkers, ketone bodies, and the prevention of Alzheimer’s disease. Metabolism. 2015 Mar;64(3 Suppl 1):S51-7. doi: 10.1016/j.metabol.2014.10.033.
  23. Wegman MP, Guo M, Bennion DM, Shankar MN, et al. Practicality of intermittent fasting in humans and its effect on oxidative stress and genes related to aging and metabolism. Rejuvenation Res. 2014 Dec 29.
  24. Wen H, Yang HJ, An YJ, Kim JM, et al. Enhanced phase II detoxification contributes to beneficial effects of dietary restriction as revealed by multi-platform metabolomics studies. Mol Cell Proteomics. 2013 Mar;12(3):575-86. doi: 10.1074/mcp.M112.021352.

Low-Grain and Gluten-Free

  1. Catassi C, Bai JC, Bonaz B, Bouma G, et al. Non-celiac gluten sensitivity: the new frontier of gluten related disorders. Nutrients. 2013 Sep 26;5(10):3839-53. doi: 10.3390/nu5103839.
  2. Daulatzai MA. Non-celiac gluten sensitivity triggers gut dysbiosis, neuroinflammation, gut-brain axis dysfunction, and vulnerability for dementia. CNS Neurol Disord Drug Targets. 2015;14(1):110-31.
  3. de Punder K, Pruimboom L. The dietary intake of wheat and other cereal grains and their role in inflammation. Nutrients. 2013 Mar 12;5(3):771-87. doi: 10.3390/nu5030771.
  4. Hadjivassiliou M, Sanders DS, Grünewald RA, Woodroofe N, et al. Gluten sensitivity: from gut to brain. Lancet Neurol. 2010 Mar;9(3):318-30. doi: 10.1016/S1474-4422(09)70290-X.
  5. Lichtwark IT, Newnham ED, Robinson SR, Shepherd SJ, et al. Cognitive impairment in coeliac disease improves on a gluten-free diet and correlates with histological and serological indices of disease severity. Aliment Pharmacol Ther. 2014 Jul;40(2):160-70. doi: 10.1111/apt.12809.
  6. Mansueto P, Seidita A, D’Alcamo A, Carroccio A. Non-celiac gluten sensitivity: literature review. J Am Coll Nutr. 2014;33(1):39-54. doi: 10.1080/07315724.2014.869996. © 2018 The Institute for Functional Medicine Scientific/Medical Publications Low-Grain and Gluten-Free (cont.)
  7. Margoni D, Michalakakou K, Angeli E, Pervanidou P, et al. Serum brain-derived neurotrophic factor in children with coeliac disease. Eur J Clin Invest. 2018 May;48(5):e12916. doi: 10.1111/eci.12916.
  8. Mitoma H, Adhikari K, Aeschlimann D, Chattopadhyay P, et al. Consensus paper: neuroimmune mechanisms of cerebellar ataxias. Cerebellum. 2016 Apr;15(2):213-32. doi: 10.1007/s12311-015-0664-x.
  9. Nemani K, Hosseini Ghomi R, McCormick B, Fan X. Schizophrenia and the gut-brain axis. Prog Neuropsychopharmacol Biol Psychiatry. 2015 Jan 2;56:155-60. doi: 10.1016/j.pnpbp.2014.08.018.
  10. Nijeboer P, Bontkes HJ, Mulder CJ, Bouma G. Non-celiac gluten sensitivity. is it in the gluten or the grain? J Gastrointestin Liver Dis. 2013 Dec;22(4):435-40.
  11. Pennisi M, Bramanti A, Cantone M, Pennisi G, et al. Neurophysiology of the “celiac brain”: disentangling gut-brain connections. Front Neurosci. 2017 Sep 5;11:498. doi: 10.3389/fnins.2017.00498.
  12. Pinto-Sanchez MI, Bercik P, Verdu EF. Motility alterations in celiac disease and non-celiac gluten sensitivity. Dig Dis. 2015;33(2):200-7. doi: 10.1159/000371400.
  13. Reichelt KL, Jensen D. IgA antibodies against gliadin and gluten in multiple sclerosis. Acta Neurol Scand. 2004 Oct;110(4):239-41.
  14. Sapone A, Bai JC, Ciacci C, Dolinsek J, et al. Spectrum of gluten-related disorders: consensus on new nomenclature and classification. BMC Med. 2012 Feb 7;10:13. doi: 10.1186/1741-7015-10-13.
  15. Stomby A, Otten J, Ryberg M, Nyberg L, et al. A Paleolithic diet with and without combined aerobic and resistance exercise increases functional brain responses and hippocampal volume in subjects with type 2 diabetes. Front Aging Neurosci. 2017 Dec 4;9:391. doi: 10.3389/fnagi.2017.00391.

Miscellaneous References

Brain-Derived Neurotrophic Factor (BDNF)

  1. Behl T, Kotwani A. Downregulated brain-derived neurotrophic factor-induced oxidative stress in the pathophysiology of diabetic retinopathy. Can J Diabetes. 2017 Apr;41(2):241-246. doi: 10.1016/j.jcjd.2016.08.228.
  2. Beilharz JE, Maniam J, Morris MJ. Diet-induced cognitive deficits: the role of fat and sugar, potential mechanisms and nutritional interventions. Nutrients. 2015 Aug 12;7(8):6719-38. doi: 10.3390/nu7085307.
  3. Briana DD, Malamitsi-Puchner A. Developmental origins of adult health and disease: the metabolic role of BDNF from early life to adulthood. Metabolism. 2018 Apr;81:45-51. doi: 10.1016/j.metabol.2017.11.019.
  4. Cho J, Shin MK, Kim D, Lee I, et al. Treadmill running reverses cognitive declines due to alzheimer’s disease. Med Sci Sports Exerc. 2015 Sep;47(9):1814-24. doi: 10.1249/MSS.0000000000000612.
  5. Fanaei H, Khayat S, Kasaeian A, Javadimehr M. Effect of curcumin on serum brain-derived neurotrophic factor levels in women with premenstrual syndrome: a randomized, double-blind, placebo-controlled trial. Neuropeptides. 2016 Apr;56:25-31. doi: 10.1016/j.npep.2015.11.003.
  6. Franco-Robles E, Campos-Cervantes A, Murillo-Ortiz BO, Segovia J, et al. Effects of curcumin on brain-derived neurotrophic factor levels and oxidative damage in obesity and diabetes. Appl Physiol Nutr Metab. 2014 Feb;39(2): 211-8. doi: 10.1139/apnm-2013-0133.
  7. Leckie RL, Weinstein AM, Hodzic JC, Erickson KI. Potential moderators of physical activity on brain health. J Aging Res. 2012;2012:948981. doi: 10.1155/2012/948981.
  8. Navaratna D, Guo SZ, Hayakawa K, Wang X, et al. Decreased cerebrovascular brain-derived neurotrophic factor-mediated neuroprotection in the diabetic brain. Diabetes. 2011 Jun;60(6):1789-96. doi: 10.2337/db10-1371.
  9. Marie C, Pedard M, Quirié A, Tessier A, et al. Brain-derived neurotrophic factor secreted by the cerebral endothelium: a new actor of brain function? J Cereb Blood Flow Metab. 2018 Jan 1:271678X18766772. doi: 10.1177/0271678X18766772.
  10. Radd-Vagenas S, Duffy SL, Naismith SL, Brew BJ, et al. Effect of the mediterranean diet on cognition and brain morphology and function: a systematic review of randomized controlled trials. Am J Clin Nutr. 2018 Mar 1;107(3):389- 404. doi: 10.1093/ajcn/nqx070.
  11. Sangiovanni E, Brivio P, Dell’Agli M, Calabrese F. et al. Botanicals as modulators of neuroplasticity: focus on BDNF. Neural Plast. 2017;2017:5965371. doi: 10.1155/2017/5965371.
  12. Tsai SW, Chan YC, Liang F, Hsu CY, Lee IT. Brain-derived neurotrophic factor correlated with muscle strength in subjects undergoing stationary bicycle exercise training. J Diabetes Complications. 2015 Apr;29(3):367-71. doi: 10.1016/j. Jdiacomp.2015.01.014.

Diet

  1. Abbatecola AM, Russo M, Barbieri M. Dietary patterns and cognition in older persons. Curr Opin Clin Nutr Metab Care. 2018 Jan;21(1):10-13. doi: 10.1097/MCO.0000000000000434.
  2. Berendsen AM, Kang JH, Feskens EJM, de Groot CPGM, et al. Association of long-term adherence to the MIND diet with cognitive function and cognitive decline in american women. J Nutr Health Aging. 2018;22(2):222-229. doi: 10.1007/s12603-017-0909-0
  3. Berti V, Murray J, Davies M, Spector N, et al. Nutrient patterns and brain biomarkers of alzheimer’s disease in cognitively normal individuals. J Nutr Health Aging. 2015 Apr;19(4):413-23. doi: 10.1007/s12603-014-0534-0.
  4. Beilharz JE, Maniam J, Morris MJ. Diet-induced cognitive deficits: the role of fat and sugar, potential mechanisms and nutritional interventions. Nutrients. 2015 Aug 12;7(8):6719-38. doi: 10.3390/nu7085307.
  5. Cavallo DN, Horino M, McCarthy WJ. Adult intake of minimally processed fruits and vegetables: associations with cardiometabolic disease risk factors. J Acad Nutr Diet. 2016 Sep;116(9):1387-1394. doi: 10.1016/j.jand.2016.03.019.
  6. Del Brutto OH, Mera RM, Gillman J, Zambrano M, Ha JE. Oily Fish intake and cognitive performance in communitydwelling older adults: the atahualpa project. J Community Health. 2016 Feb;41(1):82-6. doi: 10.1007/s10900-015-0070-9.
  7. Galland L. The gut microbiome and the brain. J Med Food. 2014 Dec;17(12):1261-72. doi: 10.1089/jmf.2014.7000.
  8. Gower BA, Goss AM. A lower-carbohydrate, higher-fat diet reduces abdominal and intermuscular fat and increases insulin sensitivity in adults at risk of type 2 diabetes. J Nutr. 2015 Jan;145(1):177S-83S. doi: 10.3945/jn.114.195065.
  9. Hughes KC, Gao X, Kim IY, Wang M, et al. Intake of dairy foods and risk of parkinson's disease. Neurology. 2017 Jul 4;89(1):46-52. doi: 10.1212/WNL.0000000000004057.
  10. Jackson PA, Pialoux V, Corbett D, Drogos L, et al. Promoting brain health through exercise and diet in older adults: a physiological perspective. J Physiol. 2016 Aug 15;594(16):4485-98. doi: 10.1113/JP271270. n Kalli EG. Association of nutrients with biomarkers of alzheimer’s disease. Adv Exp Med Biol. 2017;987:257-268. doi: 10.1007/978-3-319-57379-3_23.
  11. Kannappan R, Gupta SC, Kim JH, Reuter S, Aggarwal BB. Neuroprotection by spice-derived nutraceuticals: you are what you eat. Mol Neurobiol. 2011 Oct;44(2):142-59. doi: 10.1007/s12035-011-8168-2.
  12. Kondo K, Morino K, Nishio Y, Kondo M, et al. A fish-based diet intervention improves endothelial function in postmenopausal women with type 2 diabetes mellitus: a randomized crossover trial. Metabolism. 2014 Jul;63(7):930-40. doi: 10.1016/j.metabol.2014.04.005.
  13. Masana MF, Koyanagi A, Haro JM, Tyrovolas S. n-3 Fatty acids, mediterranean diet and cognitive function in normal aging: a systematic review. Exp Gerontol. 2017 May;91:39-50. doi: 10.1016/j.exger.2017.02.008.
  14. Mischley LK, Lau RC, Bennett RD. Role of diet and nutritional supplements in parkinson’s disease progression. Oxid Med Cell Longev. 2017;2017:6405278. doi: 10.1155/2017/6405278. n  Morris MC. Nutrition and risk of dementia: overview and methodological issues. Ann N Y Acad Sci. 2016 Mar;1367(1):31-7. doi: 10.1111/nyas.13047.
  15. Morris MC, Tangney CC, Wang Y, Sacks FM, et al. MIND diet associated with reduced incidence of alzheimer’s disease. Alzheimers Dement. 2015 Sep;11(9):1007-14. doi: 10.1016/j.jalz.2014.11.009.
  16. Phillips C. Lifestyle modulators of neuroplasticity: how physical activity, mental engagement, and diet promote cognitive health during aging. Neural Plast. 2017;2017:3589271. doi: 10.1155/2017/3589271.
  17. Pistollato F, Iglesias RC, Ruiz R, Aparicio S, et al. Nutritional patterns associated with the maintenance of neurocognitive functions and the risk of dementia and alzheimer’s disease: A focus on human studies.Pharmacol Res. 2018 May;131:32- 43. doi: 10.1016/j.phrs.2018.03.012.
  18. Solfrizzi V, Custodero C, Lozupone M, Imbimbo BP, et al. Relationships of dietary patterns, foods, and micro- and macronutrients with alzheimer’s disease and late-life cognitive disorders: a systematic review. J Alzheimers Dis. 2017;59(3):815-849. doi: 10.3233/JAD-170248.
  19. Soultoukis GA, Partridge L. Dietary protein, metabolism, and aging. Annu Rev Biochem. 2016 Jun 2;85:5-34. doi: 10.1146/annurev-biochem-060815-014422.
  20. Tucker KL. Nutrient intake, nutritional status, and cognitive function with aging. Ann N Y Acad Sci. 2016 Mar;1367(1):38-49. doi: 10.1111/nyas.13062.
  21. Valls-Pedret C, Sala-Vila A, Serra-Mir M, Corella D, et al. mediterranean diet and age-related cognitive decline: a randomized clinical trial. JAMA Intern Med. 2015 Jul;175(7):1094-103. doi: 10.1001/jamainternmed.2015.1668.
  22. Willcox DC, Scapagnini G, Willcox BJ. Healthy aging diets other than the mediterranean: a focus on the okinawan diet. Mech Ageing Dev. 2014 Mar-Apr;136-137:148-62. doi: 10.1016/j.mad.2014.01.002.
  23. Yannakoulia M, Kontogianni M, Scarmeas N. Cognitive health and mediterranean diet: just diet or lifestyle pattern? Ageing Res Rev. 2015 Mar;20C:74-78. doi: 10.1016/j.arr.2014.10.003.

Longevity/Neurodegeneration

  1. Aon MA, Cortassa S, Juhaszova M, Sollott SJ. Mitochondrial health, the epigenome and healthspan. Clin Sci (Lond). 2016 Aug 1;130(15):1285-305. doi: 10.1042/CS20160002. n          Blagosklonny MV. Once again on rapamycin‐induced insulin resistance and longevity: despite of or owing to. Aging. May 2012; 4(5):350-358.
  2. Calabrese V, Cornelius C, Mancuso C, Pennisi G, et al. Cellular stress response: a novel target for chemoprevention and nutritional neuroprotection in aging, neurodegenerative disorders and longevity. Neurochem Res. 2008 Dec;33(12):2444- 71. doi: 10.1007/s11064-008-9775-9. n  Calsolaro V, Edison P. Alterations in glucose metabolism in alzheimer’s disease. Recent Pat Endocr Metab Immune Drug Discov. 2016;10(1):31-39.
  3. Camandola S, Mattson MP. Brain metabolism in health, aging, and neurodegeneration. EMBO J. 2017 Jun 1;36(11):1474- 1492. doi: 10.15252/embj.201695810.
  4. Cornelius C, Perrotta R, Graziano A, Calabrese EJ, Calabrese V. Stress responses, vitagenes and hormesis as critical determinants in aging and longevity: mitochondria as a “chi”. Immun Ageing. 2013 Apr 25;10(1):15. doi: 10.1186/1742- 4933-10-15.
  5. Daulatzai MA. Chronic functional bowel syndrome enhances gut-brain axis dysfunction, neuroinflammation, cognitive impairment, and vulnerability to dementia. Neurochem Res. 2014 Apr;39(4):624-44. doi: 10.1007/s11064-014-1266-6.
  6. Daulatzai MA. Role of stress, depression, and aging in cognitive decline and alzheimer’s disease. Curr Top Behav Neurosci. 2014;18:265-96. doi: 10.1007/7854_2014_350. n Esposito E, Cuzzocrea S. New therapeutic strategy for parkinson’s and alzheimer’s disease. Curr Med Chem. 2010;17(25):2764-74.
  7. Joseph J, Cole G, Head E, Ingram D. Nutrition, brain aging, and neurodegeneration. J Neurosci. 2009 Oct 14;29(41):12795-801. doi: 10.1523/JNEUROSCI.3520-09.2009.
  8. Mazzetti AP, Fiorile MC, Primavera A, Lo Bello M. Glutathione transferases and neurodegenerative diseases. Neurochem Int. 2015 Feb 7;82C:10-18. doi: 10.1016/j.neuint.2015.01.008.
  9. Raefsky SM, Mattson MP. Adaptive responses of neuronal mitochondria to bioenergetic challenges: Roles in neuroplasticity and disease resistance. Free Radic Biol Med. 2017 Jan;102:203-216. doi: 10.1016/j. freeradbiomed.2016.11.045.
  10. Ramesh BN, Rao TS, Prakasam A, Sambamurti K, Rao KS. Neuronutrition and alzheimer’s disease. J Alzheimers Dis. 2010;19(4):1123-39. doi: 10.3233/JAD-2010-1312.
  11. Solfrizzi V, Panza F, Frisardi V, Seripa D, et al. Diet and Alzheimer’s disease risk factors or prevention: the current evidence. Expert Rev Neurother. 2011 May;11(5):677-708. doi: 10.1586/ern.11.56.
  12. Virmani A, Pinto L, Binienda Z, Ali S. Food, nutrigenomics, and neurodegeneration--neuroprotection by what you eat. Mol Neurobiol. 2013 Oct;48(2):353-62. doi: 10.1007/s12035-013-8498-3.

Organic Foods

  1. Barański M, Srednicka-Tober D, Volakakis N, Seal C, et al. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: a systematic literature review and meta-analyses. Br J Nutr. 2014 Sep 14;112(5):794-811. doi: 10.1017/S0007114514001366.
  2. Baudry J, Lelong H, Adriouch S, Julia C, et al. Association between organic food consumption and metabolic syndrome: cross-sectional results from the nutrinet-santé study. Eur J Nutr. 2017 Aug 2. doi: 10.1007/s00394-017-1520-1.
  3. Benbrook CM, Butler G, Latif MA, Leifert C, Davis DR. Organic production enhances milk nutritional quality by shifting fatty acid composition: a United States-wide, 18-month study. PLoS One. 2013 Dec 9;8(12):e82429. doi: 10.1371/journal.pone.0082429.
  4. Crinnion WJ. Organic foods contain higher levels of certain nutrients, lower levels of pesticides, and may provide health benefits for the consumer. Altern Med Rev. 2010 Apr;15(1):4-12.
  5. Ferreiro T, Gayoso L, Rodríguez-Otero JL. Milk phospholipids: organic milk and milk rich in conjugated linoleic acid compared with conventional milk. J Dairy Sci. 2015 Jan;98(1):9-14. doi: 10.3168/jds.2014-8244.
  6. Kamihiro S, Stergiadis S, Leifert C, Eyre MD, Butler G. Meat quality and health implications of organic and conventional beef production. Meat Sci. 2015 Feb;100:306-18.
  7. Kim S, Woo GJ. Prevalence and characterization of antimicrobial-resistant Escherichia coli isolated fromconventional and organic vegetables. Foodborne Pathog Dis. 2014 Oct;11(10):815-21. doi: 10.1089/fpd.2014.1771.
  8. Lundebye A-K, Lock E-J, Rasinger JD, et al. Lower levels of persistent organic pollutants, metals and the marine omega 3-fatty acid DHA in farmed compared to wild Atlantic salmon (salmo salar). Environmental Research. 2017;155:49-59. doi:10.1016/j.envres.2017.01.026.
  9. Mazzoncini M, Antichi D, Silvestri N, Ciantelli G, Sgherri C. Organically vs conventionally grown winter wheat: effects on grain yield, technological quality, and on phenolic composition and antioxidant properties of bran and refined flour. Food Chem. 2015 May 15;175:445-51. doi: 10.1016/j.foodchem.2014.11.138.
  10. Mugnai C, Sossidou EN, Dal Bosco A, Ruggeri S, et al. The effects of husbandry system on the grass intake and egg nutritive characteristics of laying hens. J Sci Food Agric. 2014 Feb;94(3):459-67. doi: 10.1002/jsfa.6269.
  11. Oates L, Cohen M, Braun L, Schembri A, Taskova R. Reduction in urinary organophosphate pesticide metabolites in adults after a week-long organic diet. Environ Res. 2014 Jul;132:105-11. doi: 10.1016/j.envres.2014.03.021.
  12. Rodríguez-Hernández C, Camacho M, Henríquez-Hernández LA, et al. Comparative study of the intake of toxic persistent and semi persistent pollutants through the consumption of fish and seafood from two modes of production (wild-caught and farmed). Science of The Total Environment. 2017;575:919-931. doi:10.1016/j.scitotenv.2016.09.142.
  13. Rosati A, Cafiero C, Paoletti A, Alfei B, et al. Effect of agronomical practices on carpology, fruit and oil composition, and oil sensory properties, in olive (Olea europaea L.) Food Chem. 2014 Sep 15;159:236-43. doi: 10.1016/j. foodchem.2014.03.014.
  14. Średnicka-Tober D, Barański M, Seal C, Sanderson R, et al. Composition differences between organic and conventional meat: a systematic literature review and meta-analysis. Br J Nutr. 2016 Mar 28;115(6):994-1011. doi: 10.1017/ S0007114515005073.
  15. Vinha AF, Barreira SV, Costa AS, Alves RC, Oliveira MB. Organic versus conventional tomatoes: influence on physicochemical parameters, bioactive compounds and sensorial attributes. Food Chem Toxicol. 2014 May;67:139-44. doi: 10.1016/j.fct.2014.02.018.

Phytonutrients

  1. Aires DJ, Rockwell G, Wang T, Frontera J, et al. Potentiation of dietary restriction-induced lifespan extension by polyphenols. Biochim Biophys Acta. 2012 Apr;1822(4):522-6. doi: 10.1016/j.bbadis.2012.01.005.
  2. Bastianetto S, Krantic S, Chabot JG, Quirion R. Possible involvement of programmed cell death pathways in the neuroprotective action of polyphenols. Curr Alzheimer Res. 2011 Aug;8(5):445-51.
  3. Burton-Freeman BM, Sandhu AK, Edirisinghe I. Red raspberries and their bioactive polyphenols: cardiometabolic and neuronal health links. Adv Nutr. 2016 Jan 15;7(1):44-65. doi: 10.3945/an.115.009639.
  4. Chang J, Rimando A, Pallas M, Camins A, et al. Low-dose pterostilbene, but not resveratrol, is a potent neuromodulator in aging and Alzheimer’s disease. Neurobiol Aging. 2012 Sep;33(9):2062-71. n  Corbi G, Conti V, Davinelli S, Scapagnini G et al. Dietary Phytochemicals in neuroimmunoaging: a new therapeutic possibility for humans. Front Pharmacol. 2016 Oct 13;7:364.
  5. Devassy JG, Leng S, Gabbs M, Monirujjaman M, Aukema HM. Omega-3 Polyunsaturated fatty acids and oxylipins in neuroinflammation and management of alzheimer disease. Adv Nutr. 2016 Sep 15;7(5):905-16. doi: 10.3945/ an.116.012187.
  6. Ergin V, Hariry RE, Karasu C. Ghosh D, Scheepens A. Vascular action of polyphenols. Mol Nutr Food Res. 2009 Mar;53(3):322-31. doi: 10.1002/mnfr.200800182.
  7. Essa MM, Vijayan RK, Castellano-Gonzal
Marty Ross MD Image

Follow Marty Ross MD

See full profile: on LinkedIn.
See the latest: on Twitter, YouTube, and Instagram.

About The Author

Marty Ross, MD is a passionate Lyme disease educator and clinical expert. He helps Lyme sufferers and their physicians see what really works based on his review of the science and extensive real-world experience. Dr. Ross is licensed to practice medicine in Washington State (License: MD00033296) where he has treated thousands of Lyme disease patients in his Seattle practice.

Marty Ross, MD is a graduate of Indiana University School of Medicine and Georgetown University Family Medicine Residency. He is a member of the International Lyme and Associated Disease Society (ILADS), The Institute for Functional Medicine, and The American Academy of Anti-Aging Medicine (A4M).

keep up with our LATEST!

Subscribe to receive our FREE pdf download book: How to Successfully Treat Lyme: Key Info before You Treat or Treat Again & The Ross Lyme Support Protocol; health tips; updates; special offers; and more.

© 2025 TREAT LYME